
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Effect of shear velocity on dark fermentation for biohydrogen production using dynamic membrane

pmid: 32272390
This study examined the effect of shear velocity on biohydrogen producing dynamic membrane bioreactor (DMBR) containing 50 µm polyester mesh as supporting material. Increase of shear velocity up to 6.75 m/h enhanced hydrogen production performance as well as biomass retention in both suspended and attached forms, while wash-out was found at a shear velocity of 11.69 m/h. The highest average HPR, HY, suspended biomass, and attached biomass were 26.56 ± 1.49 L/L-d, 1.78 ± 0.10 mol H2/mol glucoseadded, 9.99 ± 0.11 g VSS/L, and 8.82 g VSS/L, respectively, at a shear velocity of 6.75 m/h. Flux balance analysis showed homoacetogenic pathway decreased at the shear velocity of 4.70 m/h with the increase of hydrogen yield based on consumed substrate. The highest copy numbers of Clostridium butyricum was found at the optimum shear velocity. Shear velocity would be a critical operational criteria for continuous biohydrogen production using DMBR.
- Yonsei University Korea (Republic of)
- Yonsei University Korea (Republic of)
- University of Pannonia Hungary
- University of Pannonia Hungary
Bioreactors, Fermentation, Clostridium butyricum, Biomass, Hydrogen
Bioreactors, Fermentation, Clostridium butyricum, Biomass, Hydrogen
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).21 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
