Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Bioresource Technolo...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Bioresource Technology
Article . 2020 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Effect of shear velocity on dark fermentation for biohydrogen production using dynamic membrane

Authors: Young-Bo Sim; Ju-Hyeong Jung; Jong-Hun Park; Péter Bakonyi; Sang-Hyoun Kim;

Effect of shear velocity on dark fermentation for biohydrogen production using dynamic membrane

Abstract

This study examined the effect of shear velocity on biohydrogen producing dynamic membrane bioreactor (DMBR) containing 50 µm polyester mesh as supporting material. Increase of shear velocity up to 6.75 m/h enhanced hydrogen production performance as well as biomass retention in both suspended and attached forms, while wash-out was found at a shear velocity of 11.69 m/h. The highest average HPR, HY, suspended biomass, and attached biomass were 26.56 ± 1.49 L/L-d, 1.78 ± 0.10 mol H2/mol glucoseadded, 9.99 ± 0.11 g VSS/L, and 8.82 g VSS/L, respectively, at a shear velocity of 6.75 m/h. Flux balance analysis showed homoacetogenic pathway decreased at the shear velocity of 4.70 m/h with the increase of hydrogen yield based on consumed substrate. The highest copy numbers of Clostridium butyricum was found at the optimum shear velocity. Shear velocity would be a critical operational criteria for continuous biohydrogen production using DMBR.

Related Organizations
Keywords

Bioreactors, Fermentation, Clostridium butyricum, Biomass, Hydrogen

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    21
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
21
Top 10%
Average
Top 10%