Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Bioresource Technolo...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Bioresource Technology
Article . 2020 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Second-generation itaconic acid: An alternative product for biorefineries?

Authors: Antonio Irineudo Magalhães; Carlos Ricardo Soccol; Rafaeli Souza Silva; Juliano Feliz Thoms; Júlio Cesar de Carvalho;

Second-generation itaconic acid: An alternative product for biorefineries?

Abstract

The ability to produce second-generation itaconic acid by Aspergillus terreus, and the inhibitory effects of hydrolysis by-products on the fermentation were evaluated by cultivation in a synthetic medium containing components usually present in a real hydrolysate broth from lignocellulosic biomasses. The results showed that A. terreus NRRL 1960 can produce itaconic acid and consume xylose completely, but the conversion is less than the fermentation using only glucose. In addition, compared to fermentation of glucose, or even xylose, the mix of both sugars resulted in a lower itaconic acid yield. In the inhibitory test, the final itaconic acid titer was reduced by acetic acid, furfural, and 5-hydroxymethylfurfural concentrations of, respectively, 188, 175, and 700 mg L-1. However, the presence of any amount of acetic acid proved to be detrimental to itaconic acid production. This research sheds some light on doubts about the biorefinery implementation of itaconic acid production.

Keywords

Aspergillus, Fermentation, Succinates, Biomass

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    13
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
13
Top 10%
Average
Top 10%