Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Bioresource Technolo...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Bioresource Technology
Article . 2020 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Release characteristics of potassium and chlorine for torrefied wheat straw during a combined pyrolysis-combustion system

Authors: Ganggang Min; Houlei Zhang; Xinzhi Liu; Junyi Wang; Shuguang Zhu; Shuping Zhang; Shuping Zhang;

Release characteristics of potassium and chlorine for torrefied wheat straw during a combined pyrolysis-combustion system

Abstract

The objective is to investigate the release characteristics of potassium (K) and chlorine (Cl) for torrefied wheat straw during a combined pyrolysis-combustion system. Powder and flake wheat straw samples were torrefied at different temperature of 200-300 ℃. The basic characteristics of torrefied samples and the K and Cl release rates of torrefied samples and their char samples derived from pyrolysis at 400-800 ℃ were analyzed and characterized. The results indicated that release rate of Cl was significantly higher than that of K under the same torrefaction conditions. In order to keep most of K and Cl remaining in biochar as well as the volatiles were completely released, the pyrolysis temperature of 700 ℃ for pyrolysis-combustion system was suitable. The total release rate of K and Cl at the pyrolysis temperature of 700 ℃ both exhibited a change trend of decreasing first and then increasing with the increase of torrefaction severity.

Related Organizations
Keywords

Hot Temperature, Temperature, Potassium, Biomass, Chlorine, Pyrolysis, Triticum

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    16
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
16
Top 10%
Average
Top 10%