
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Red mud-based inorganic polymer spheres: Innovative and environmentally friendly anaerobic digestion enhancers

Red mud-based inorganic polymer spheres were used as alternative pH regulators and process enhancers in sequencing batch anaerobic reactors treating cheese whey. This byproduct tends to quickly acidify under anaerobic conditions, and the common route to control pH and ensure suitable conditions for methane production involves the use of commercial alkaline raw materials. The spheres were synthesized using significant amounts of hazardous and toxic waste, red mud (50 wt% of solid components), whose recycling is challenging. The inorganic polymeric spheres, when compared to virgin alkaline raw materials, improved organic matter removal by 44%, prevented VFA accumulation (acidification degree less than 20%), maintained pH values in a range (6.5-7.2) to ensure maximum methanogenic activity by archaea microorganisms, and boosted the methane volume by ~90%. These promising results demonstrate the feasibility and performance advantages of using these innovative spheres instead of virgin raw materials, which is an important tool towards sustainable development.
- University of Aveiro Portugal
- University of Aveiro Portugal
- Centro de Estudos Ambientais e Marinhos Portugal
- Centro de Estudos Ambientais e Marinhos Portugal
Polymers, Euryarchaeota, Bioreactors, Anaerobic digestion, Whey, Anaerobiosis, Methane, Red mud, Process improvement
Polymers, Euryarchaeota, Bioreactors, Anaerobic digestion, Whey, Anaerobiosis, Methane, Red mud, Process improvement
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).14 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
