Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Bioresource Technolo...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Bioresource Technology
Article . 2020 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Improving enzymatic hydrolysis of mechanically refined poplar branches with assistance of hydrothermal and Fenton pretreatment

Authors: Qian Ren; Yonghao Ni; Wei Liu; Wei Liu; Wei Liu; Qingxi Hou; Qingxi Hou; +2 Authors

Improving enzymatic hydrolysis of mechanically refined poplar branches with assistance of hydrothermal and Fenton pretreatment

Abstract

The combination of different pretreatment methods can effectively overcome recalcitrance of lignocellulosic biomass to ensure its highly efficient conversion into bio-based products. In this study, the combined pretreatments of chemical methods (hydrothermal treatment and Fenton treatment) with mechanical refining were used to improve the enzymatic hydrolysis efficiency of poplar branches. The results indicated that hydrothermal pretreatment and Fenton pretreatment can effectively improve the enzymatic hydrolysis of poplar substrates, e.g., the maximum glucose conversion yield and glucose concentration reached 92.4% and 20.8 g/L, respectively. The pre-hydrolysates contained some valuable components such as monosaccharides, oligosaccharides, acetic acid, furfural, and hydroxymethylfurfural. The main characteristics (specific surface area, water retention value, fines content, and surface lignin concentration) of poplar substrates were obviously changed by the combined pretreatment, which benefit the enzymatic hydrolysis.

Related Organizations
Keywords

Populus, Hydrolysis, Biomass, Lignin, Acetic Acid

Powered by OpenAIRE graph
Found an issue? Give us feedback