
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
A comprehensive review on emerging constructed wetland coupled microbial fuel cell technology: Potential applications and challenges

pmid: 33242686
Constructed wetlands (CWs) integrated with bioelectrochemical systems (BESs) are being intensively researched with the names like constructed wetland-microbial fuel cell (CW-MFC), electro-wetlands, electroactive wetlands, and microbial electrochemical technologies-based constructed wetland since the last decade. The implantation of BES in CW facilitates the tuning of redox activities and electron flow balance in aerobic and anaerobic zones in the CW bed matrix, thereby alleviating the limitation associated with electron acceptor availability and increasing its operational controllability. The benefits of CW-MFC include high treatment efficiency, electricity generation, and recalcitrant pollutant abatement. This article presents CW-MFC technology's journey since its emergence to date, encompassing the research done so far, including the basic principle and functioning, bio-electrocatalysts as its machinery, influential factors for microbial interactions, and operational parameters controlling different processes. A few key challenges and potential applications are also discussed for the CW-MFC systems.
Bioelectric Energy Sources, 600, Wastewater, Electricity, Wetlands, electroactive wetland, constructed wetland-microbial fuel cell, Electro-wetland Microbial electrochemical technologies Microbial fuel cell, Electrodes
Bioelectric Energy Sources, 600, Wastewater, Electricity, Wetlands, electroactive wetland, constructed wetland-microbial fuel cell, Electro-wetland Microbial electrochemical technologies Microbial fuel cell, Electrodes
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).173 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 0.1%
