Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Bioresource Technolo...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Bioresource Technology
Article . 2021 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A comprehensive review on emerging constructed wetland coupled microbial fuel cell technology: Potential applications and challenges

Authors: Gupta, S; Srivastava, P; Patil, SA; Yadav, AK;

A comprehensive review on emerging constructed wetland coupled microbial fuel cell technology: Potential applications and challenges

Abstract

Constructed wetlands (CWs) integrated with bioelectrochemical systems (BESs) are being intensively researched with the names like constructed wetland-microbial fuel cell (CW-MFC), electro-wetlands, electroactive wetlands, and microbial electrochemical technologies-based constructed wetland since the last decade. The implantation of BES in CW facilitates the tuning of redox activities and electron flow balance in aerobic and anaerobic zones in the CW bed matrix, thereby alleviating the limitation associated with electron acceptor availability and increasing its operational controllability. The benefits of CW-MFC include high treatment efficiency, electricity generation, and recalcitrant pollutant abatement. This article presents CW-MFC technology's journey since its emergence to date, encompassing the research done so far, including the basic principle and functioning, bio-electrocatalysts as its machinery, influential factors for microbial interactions, and operational parameters controlling different processes. A few key challenges and potential applications are also discussed for the CW-MFC systems.

Country
Australia
Keywords

Bioelectric Energy Sources, 600, Wastewater, Electricity, Wetlands, electroactive wetland, constructed wetland-microbial fuel cell, Electro-wetland Microbial electrochemical technologies Microbial fuel cell, Electrodes

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    173
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 0.1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
173
Top 1%
Top 10%
Top 0.1%