
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Binary and ternary trace elements to enhance anaerobic digestion of cattle manure: Focusing on kinetic models for biogas production and digestate utilization

pmid: 33388599
The effects of binary and ternary trace elements (TEs) (Fe/Co, Fe/Ni, and Fe/Co/Ni) on the anaerobic digestion (AD) of cattle manure were investigated using kinetic models (first-order, logistic, modified Gompertz, and Coats-Redfern) and experimental measurements. Binary and ternary TEs can significantly improve the biogas production rate and yield potential. The deviation between the predicted and measured data for biogas yield with logistic model (2.1%-5.3%) and modified Gompertz model (0.32%-2.9%) was smaller than that with first-order kinetic model (6.9%-9.9%). The Coats-Redfern model fitting indicated that the activation energy of digestates with trace elements during pyrolysis was reduced by 3.9%-26.2% compared with the control group. Meanwhile, digestates with TEs showed remarkable fertility (5.72%-5.95%). The combination of kinetic models and experimental measurements can effectively quantify the effect of TEs on AD performance and provide an informed choice for industrial production.
- Xi'an University of Architecture and Technology China (People's Republic of)
- Xi'an University of Architecture and Technology China (People's Republic of)
Trace Elements, Manure, Bioreactors, Biofuels, Animals, Cattle, Anaerobiosis, Methane
Trace Elements, Manure, Bioreactors, Biofuels, Animals, Cattle, Anaerobiosis, Methane
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).91 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
