
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Enzymatic conversion of pretreated lignocellulosic biomass: A review on influence of structural changes of lignin

pmid: 33454445
The demands of energy sustainability drive efforts to bio-chemical conversion of biomass into biofuels through pretreatment, enzymatic hydrolysis, and microbial fermentation. Pretreatment leads to significant structural changes of the complex lignin polymer that affect yield and productivity of the enzymatic conversion of lignocellulosic biomass. Structural changes of lignin after pretreatment include functional groups, inter unit linkages and compositions. These changes influence non-productive adsorption of enzyme on lignin through hydrophobic interaction and electrostatic interaction as well as hydrogen bonding. This paper reviews the relationships between structural changes of lignin and enzymatic hydrolysis of pretreated lignocellulosic biomass. The formation of pseudo-lignin during dilute acid pretreatment is revealed, and their negative effect on enzymatic hydrolysis is discussed.
- University of North Texas United States
- Universiti Malaysia Terengganu Malaysia
- Universiti Malaysia Terengganu Malaysia
- Donghua University China (People's Republic of)
- Arctic Research Centre Sweden
Hydrolysis, Lignin characterization, Pseudo-lignin, Lignin, Enzymatic hydrolysis, Biofuels, Biomass, Lignin structure, Pretreatment
Hydrolysis, Lignin characterization, Pseudo-lignin, Lignin, Enzymatic hydrolysis, Biofuels, Biomass, Lignin structure, Pretreatment
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).147 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 0.1%
