
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Superheated steam as carrier gas and the sole heat source to enhance biomass torrefaction

pmid: 33774570
Superheated steam (SHS) has been used as a carrier gas for pressurized steam torrefaction, steam explosion or pyrolysis, but is barely used as a heat source. However, SHS is superior in thermal capacity and heat transfer coefficient resulting in even heating and fast heating rates. Therefore, this work applied SHS as the sole heat source for torrefaction at ambient pressure. A setup was specially designed and capable of heating wood shavings at a rate >120 °C•min-1. Solid products were analyzed in many aspects and demonstrated the enhanced organics conversion owing to SHS torrefaction. Torrefied biomass was comparable to slow pyrolysis char in fuel quality and superior to that of conventional torrefactions. Moreover, SHS torrefaction was super-timesaving. A coal-like product (HHV of 27.84 MJ•kg-1) was achieved in only 15 min at 350 °C. Overall, SHS torrefaction boosted biomass densification and gaveriseto greater production efficiency.
- Chinese Academy of Agricultural Sciences China (People's Republic of)
- Ghent University Belgium
Hot Temperature, Temperature, Wood, Steam, Biomass, Pyrolysis
Hot Temperature, Temperature, Wood, Steam, Biomass, Pyrolysis
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).47 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
