Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Bioresource Technolo...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Bioresource Technology
Article . 2022 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Combined oxidization and liquid ammonia pretreatment of bamboo of various ages and species for maximizing fermentable sugar release

Authors: Mingyang Cheng; Chao Zhao; Qianjun Shao; Muhammad Hassan; Jiajun Lu;

Combined oxidization and liquid ammonia pretreatment of bamboo of various ages and species for maximizing fermentable sugar release

Abstract

To determine the potential for improving biomass enzymolysis, a combined oxidization and liquid ammonia pretreatment (OD-LAT) was employed for bamboo. The effects of oxidant, bamboo ages, and species on the pretreatment effectiveness and subsequent enzymolysis were studied. Under the optimal OD-LAT pretreatment and enzymolysis of the B-NA bamboo Neosinocalamus affinis, the glucan and xylan conversion reached 83.85% and 78.66%, respectively, and approximately 59.7-68.5 g of fermentable sugars can be produced per 100 g of dry bamboo, which was an approximately 5-8 fold increase compared with untreated sample. The H2O2 loading of 1.0 was the optimal oxidant dosage for the OD-LAT process. The OD-LAT pretreatment was only suitable for bamboo under three-year-old, and it significantly improved the enzymolysis of B-NA and B-BM, while it was limited to B-DO and B-PP. The pretreatment effects of bamboo were not only related to composition but also to the bamboo age, species, macro-structures and micro-structures.

Related Organizations
Keywords

Ammonia, Hydrolysis, Bambusa, Xylans, Hydrogen Peroxide, Sugars

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    15
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
15
Top 10%
Average
Top 10%
bronze