Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Bioresource Technolo...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Bioresource Technology
Article . 2022 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Techno-economic analysis of food waste valorization for integrated production of polyhydroxyalkanoates and biofuels

Authors: Naveenkumar, Rajendran; Jeehoon, Han;

Techno-economic analysis of food waste valorization for integrated production of polyhydroxyalkanoates and biofuels

Abstract

This study focused on the techno-economic analysis of integrated polyhydroxyalkanoates (PHAs) and biofuels such as biohydrogen, bioethanol, and 2,3-butanediol production from food waste (FW). Based on previous literature studies, the integrated process was developed. The process plan produced 2.01 MT of PHAs, 0.29 MT of biohydrogen, 4.79 MT of bioethanol, and 6.79 MT of 2,3-butanediol per day, from 50 MT of FW. The process plan has a positive net present value of 4.47 M$, a 13.68% return on investment, a payback period of 7.31 yr, and an internal rate of return of 11.95%. Sensitivity analysis was used to examine the economic feasibility. The actual minimum selling price (MSP) of PHAs was 4.83 $/kg, and the lowest achievable MSP with 30% solid loading is 2.41 $/kg. The solid loading in the hydrolysis stage and the price of byproducts have a major impact on the economic factors and MSP of PHAs.

Related Organizations
Keywords

Food, Biofuels, Hydrolysis, Polyhydroxyalkanoates, Refuse Disposal

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    60
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
60
Top 10%
Top 10%
Top 1%