
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Continuous electrocoagulation of Chlorella vulgaris in a novel channel-flow reactor: A pilot-scale harvesting study

pmid: 35292383
The most frequently used method to harvest microalgae on an industrial scale is centrifugation, although this has very high energy costs. To reduce these costs, a continuous electrocoagulation process for harvesting Chlorella vulgaris was developed and tested using a pilot-scale 111 L working volume device consisting of an electrolyser with iron electrodes, aggregation channel and lamellar settler. The flow rate of the microalgal suspension through the device was 240 L/h. When using controlled cultivation and subsequent electrocoagulation, a high harvesting efficiency (above 85%), a low Fe contamination in the harvested biomass (<4 mg Fe/g dry biomass, a harvested biomass complied with legislative requirements for food) and significant energy savings were achieved. When comparing electrocoagulation and subsequent centrifugation with the use of centrifugation alone, energy savings were 80 % for a biomass harvesting concentration of 0.23 g/L. Electrocoagulation was thus proven to be a feasible pre-concentration method for harvesting microalgae.
- Czech Academy of Sciences Czech Republic
- Institute of Microbiology Czech Republic
- Institute of Microbiology Czech Republic
- Institute of Chemical Process Fundamentals Czech Republic
- University of Chemistry and Technology Czech Republic
microalgae, Flocculation, electroflocculation, electrocoagulation, Electrocoagulation, Microalgae, chlorella, Biomass, Chlorella vulgaris
microalgae, Flocculation, electroflocculation, electrocoagulation, Electrocoagulation, Microalgae, chlorella, Biomass, Chlorella vulgaris
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).11 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
