
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Biochar amended microbial conversion of C1 gases to ethanol and butanol: Effects of biochar feedstock type and processing temperature

pmid: 35792327
Biochar feedstock and production method affects its physicochemical properties and subsequent application. This study investigated the effects of biochar from switchgrass (SGB) and poultry litter (PLB) produced at 350 and 700 °C on alcohol formation using CO:CO2:H2 (40:30:30) by Clostridium carboxidivorans (P7) and C. ragsdalei (P11). Fermentations were performed in 250 mL bottles with a 50 mL working volume at 37 °C. Strains P7 and P11 produced 1.2- to 2.2-fold more alcohol and consumed 1.2- to 1.9-fold more syngas using biochars made at 700 °C compared to 350 °C. Both strains also produced 1.4- to1.9-fold more alcohol with both biochars made at 700 °C compared to control without biochar. Strain P11 produced 1.1- and 1.6-fold more alcohol and fatty acids, respectively, in medium with PLB made at 700 °C compared to strain P7. These results provide guidance towards the selection of biochar type and production temperature to improve syngas fermentation.
- Oklahoma State University Oklahoma City United States
Clostridium, Ethanol, Butanols, Temperature, 1-Butanol, Charcoal, Fermentation, Gases
Clostridium, Ethanol, Butanols, Temperature, 1-Butanol, Charcoal, Fermentation, Gases
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).9 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
