
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Hydrolyzed polyacrylamide biotransformation during the formation of anode biofilm in microbial fuel cell biosystem: Bioelectricity, metabolites and functional microorganisms

pmid: 35798169
The anode biofilm serves as the core dominating the performance of microbial fuel cell (MFC) biosystem. This research provides new insights into hydrolyzed polyacrylamide (HPAM) biotransformation during the formation of anode biofilm. The current density, coulombic efficiency, voltage, power density, volatile fatty acid (VFA) production and total nitrogen (TN) removal enhanced with the thickening of biofilm (1-6 cm), and the maximums achieved 146 mA·m-2, 47.3%, 8.76 V, 1.28 W·m-2, 184 mg·L-1 and 84.6%, respectively. HPAM concentration descended from 508 mg·L-1 to 83.3 mg·L-1 after 60 days. HPAM was metabolized into VFAs, N2, NO2--N and NO3--N, thereby releasing electrons. Laccase and tyrosine/tryptophan protein induced HPAM metabolism and bioelectricity production. The microbial functions involving HPAM biotransformation and bioelectricity generation were clarified. The alternative resource recovery, techno-economic comparison and development direction of MFC biosystem were discussed to achieve the synchronization of HPAM-containing wastewater treatment and bioelectricity generation based on MFC biosystem.
- Shandong University of Science and Technology China (People's Republic of)
- Sinopec (China) China (People's Republic of)
- Shandong University of Science and Technology China (People's Republic of)
Electricity, Bioelectric Energy Sources, Biofilms, Acrylic Resins, Wastewater, Electrodes, Biotransformation
Electricity, Bioelectric Energy Sources, Biofilms, Acrylic Resins, Wastewater, Electrodes, Biotransformation
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).12 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
