Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Bioresource Technolo...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Bioresource Technology
Article . 2022 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Hydrolyzed polyacrylamide biotransformation during the formation of anode biofilm in microbial fuel cell biosystem: Bioelectricity, metabolites and functional microorganisms

Authors: Lanmei Zhao; Dong Zhao;

Hydrolyzed polyacrylamide biotransformation during the formation of anode biofilm in microbial fuel cell biosystem: Bioelectricity, metabolites and functional microorganisms

Abstract

The anode biofilm serves as the core dominating the performance of microbial fuel cell (MFC) biosystem. This research provides new insights into hydrolyzed polyacrylamide (HPAM) biotransformation during the formation of anode biofilm. The current density, coulombic efficiency, voltage, power density, volatile fatty acid (VFA) production and total nitrogen (TN) removal enhanced with the thickening of biofilm (1-6 cm), and the maximums achieved 146 mA·m-2, 47.3%, 8.76 V, 1.28 W·m-2, 184 mg·L-1 and 84.6%, respectively. HPAM concentration descended from 508 mg·L-1 to 83.3 mg·L-1 after 60 days. HPAM was metabolized into VFAs, N2, NO2--N and NO3--N, thereby releasing electrons. Laccase and tyrosine/tryptophan protein induced HPAM metabolism and bioelectricity production. The microbial functions involving HPAM biotransformation and bioelectricity generation were clarified. The alternative resource recovery, techno-economic comparison and development direction of MFC biosystem were discussed to achieve the synchronization of HPAM-containing wastewater treatment and bioelectricity generation based on MFC biosystem.

Related Organizations
Keywords

Electricity, Bioelectric Energy Sources, Biofilms, Acrylic Resins, Wastewater, Electrodes, Biotransformation

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    12
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
12
Top 10%
Average
Top 10%