Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Bioresource Technolo...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Bioresource Technology
Article . 2022 . Peer-reviewed
License: CC BY
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Studying microbial fuel cells equipped with heterogeneous ion exchange membranes: Electrochemical performance and microbial community assessment of anodic and membrane-surface biofilms

Authors: Szabolcs Szakács; László Koók; Nándor Nemestóthy; Katalin Bélafi-Bakó; Péter Bakonyi;

Studying microbial fuel cells equipped with heterogeneous ion exchange membranes: Electrochemical performance and microbial community assessment of anodic and membrane-surface biofilms

Abstract

In this study, microbial fuel cells deploying heterogeneous ion exchange membranes were assessed. The behavior of the cells as a function of the membrane applied was evaluated in terms of maximal current density, electron recovery efficiency and energy production rate (up to 427.5 mA, 47.7 % and 660 J m-2h-1, respectively) at different substrate (acetate) feedings (2.15 - 8.6 mM). System performance was characterized in the light of oxygen and acetate crossovers. The effect of membranes (in relation to the oxygen mass transfer coefficient, kO) on the microbial diversity of anodic and membrane-surface biofilms was investigated. Based on the relative abundance of bacterial orders, the two populations could be distinguished and membranes with larger kO tended to promote more the air-tolerant microbes in the biofouling layer. This indicates that membrane kO has a direct effect on membrane foulant microbial composition, and thus, on the expected time-stability of the membrane.

Related Organizations
Keywords

Ion Exchange, Oxygen, Bioelectric Energy Sources, Biofilms, Microbiota, Membranes, Artificial, Electrodes

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    5
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
5
Top 10%
Average
Top 10%
hybrid