
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Studying microbial fuel cells equipped with heterogeneous ion exchange membranes: Electrochemical performance and microbial community assessment of anodic and membrane-surface biofilms

pmid: 35850395
In this study, microbial fuel cells deploying heterogeneous ion exchange membranes were assessed. The behavior of the cells as a function of the membrane applied was evaluated in terms of maximal current density, electron recovery efficiency and energy production rate (up to 427.5 mA, 47.7 % and 660 J m-2h-1, respectively) at different substrate (acetate) feedings (2.15 - 8.6 mM). System performance was characterized in the light of oxygen and acetate crossovers. The effect of membranes (in relation to the oxygen mass transfer coefficient, kO) on the microbial diversity of anodic and membrane-surface biofilms was investigated. Based on the relative abundance of bacterial orders, the two populations could be distinguished and membranes with larger kO tended to promote more the air-tolerant microbes in the biofouling layer. This indicates that membrane kO has a direct effect on membrane foulant microbial composition, and thus, on the expected time-stability of the membrane.
- University of Pannonia Hungary
- University of Pannonia Hungary
Ion Exchange, Oxygen, Bioelectric Energy Sources, Biofilms, Microbiota, Membranes, Artificial, Electrodes
Ion Exchange, Oxygen, Bioelectric Energy Sources, Biofilms, Microbiota, Membranes, Artificial, Electrodes
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).5 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
