
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Performance and mechanism of microbial fuel cell coupled with anaerobic membrane bioreactor system for fouling control

pmid: 36804586
To remove membrane fouling, a bio-electrochemical system that can generate a micro-electric field and micro-current was constructed. After 11 days of operation, the trans-membrane pressure difference of membrane modules in the open- and closed-circuit groups increased by 35.8 kPa and 6.2 kPa, respectively. The concentrations of total polysaccharide and protein in the open-circuit group were 1.8 and 1.1 times higher than those in the closed-circuit group, respectively. In addition, X-ray photoelectron spectroscopy and thermogravimetric analysis showed that inorganic crystals such as calcium carbonate were present on the membrane surface, and the concentration of calcium ion in the control group was 14.7 times that of the experimental group. High-throughput sequencing demonstrated that the enrichment of some electroactive bacteria and other microorganisms has a positive effect on the control of membrane fouling. Therefore, this system can effectively alleviate membrane fouling of a bioreactor, by targeting the membrane foulants.
- Southeast University China (People's Republic of)
- Southeast University China (People's Republic of)
- Tohoku University Japan
Bioreactors, Sewage, Bioelectric Energy Sources, Membranes, Artificial, Anaerobiosis, Wastewater
Bioreactors, Sewage, Bioelectric Energy Sources, Membranes, Artificial, Anaerobiosis, Wastewater
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).8 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
