
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Effect of specific irradiance on productivity and pigment and protein production of Porphyridium purpureum (Rhodophyta) semi-continuous culture


Andrei B. Borovkov

Irina N. Gudvilovich

Anna L. Avsiyan
pmid: 36822552
Porphyridium purpureum is a promising microalga species due to the content of various valuable compounds. In this study, specific irradiance parameter, representing the amount of light energy per unit of microalgae biomass, was introduced. The growth characteristics and pigments and protein accumulation of P. purpureum culture were investigated under semi-continuous mode. Varying dilution rate and surface irradiance resulted in a specific irradiance of 0.2-6.7 W g-1. Using mathematical modeling, we determined the patterns of changes in biomass, pigments, protein content and productivity of P. purpureum culture depending on specific irradiance. The content of target compounds was maximized under the lowest level of specific irradiance (0.2-1.2 W g-1), while the highest productivity of this components was reached under 1.2-1.7 W g-1. Overall, lower irradiance levels were favorable for P. purpureum cultivation based on the energy consumption and production characteristics of this species.
Rhodophyta, Microalgae, Biomass, Porphyridium, Models, Theoretical
Rhodophyta, Microalgae, Biomass, Porphyridium, Models, Theoretical
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).4 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
