
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
A comparison of reactor configuration using a fruit waste fed two-stage anaerobic up-flow leachate reactor microbial fuel cell and a single-stage microbial fuel cell

pmid: 36841397
Food waste generation and its consequent environmental impacts are increasing due to rapid urbanization, the global population, and associated food demand. Microbial fuel cells (MFCs) are a sustainable technology through which this food waste can be treated and used to produce bioelectricity. This study used two MFC configurations, a two-stage anaerobic up-flow leachate reactor MFC and a single-stage MFC, comparing the potential to treat solid fruit waste and fruit waste leachate. The two-stage MFC showed a higher potential to remove substrate at a shorter time compared to single-stage MFC. In 30 days, the two-stage anaerobic up-flow leachate reactor had a power density of 221 mW/m2. It was able to remove more total solids (by 95 %), volatile solids (by 70 %), total chemical oxygen demand (by 83 %), soluble chemical oxygen demand (by 87 %), and carbohydrates (by 33 %) compared to the single-stage MFC. However, the single-stage MFC showed higher coulombic efficiency (by 86.7 %) compared to the two-stage MFC. The efficiency of single-stage MFC improved by adding buffer and maintaining a neutral pH level of the substrate. The results of this study emphasize the importance of reactor design and demonstrate that MFC can be a viable technology to generate bioenergy from food waste.
Bioelectric Energy Sources, Solid Waste, Refuse Disposal, Electricity, Fruit, Anaerobiosis, Electrodes
Bioelectric Energy Sources, Solid Waste, Refuse Disposal, Electricity, Fruit, Anaerobiosis, Electrodes
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).15 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
