Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Biophysical Chemistr...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Biophysical Chemistry
Article . 2018 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Copper(II) complexation by fragment of central part of FBP28 protein from Mus musculus

Authors: Joanna Makowska; Krzysztof Żamojć; Dariusz Wyrzykowski; Wiesław Wiczk; Lech Chmurzyński;

Copper(II) complexation by fragment of central part of FBP28 protein from Mus musculus

Abstract

Steady-state and time-resolved fluorescence spectroscopy, UV spectrophotometry and isothermal titration calorimetry techniques were used to study the coordinating properties of the 17aa peptide fragment (D17) derived from the central part of the mouse formin binding protein (FBP28 with the PDB code: 1E0L) towards Cu2+ ions. All the measurements were run in the 2-(N-morpholino)ethanesulfonic acid buffer (20 mM, pH 6.0). Under experimental conditions the formation of the 1:1 complex of Cu2+ ions with D17 is an entropy-driven process. Cu2+ ions cause the static fluorescence quenching of the peptide studied through the formation of a non-fluorescent complex. Furthermore, the thermal stability of D17 was discussed based on the results obtained from differential scanning fluorimetry (nanoDSF) data.

Related Organizations
Keywords

Calorimetry, Mice, Spectrometry, Fluorescence, Animals, Thermodynamics, Spectrophotometry, Ultraviolet, Transcriptional Elongation Factors, Copper, Protein Binding

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    14
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
14
Top 10%
Average
Top 10%