Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Building and Environ...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Building and Environment
Article . 2015 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Experimental and simulation analysis of daylight glare probability in offices with dynamic window shades

Authors: Iason Konstantzos; Athanasios Tzempelikos; Ying-Chieh Chan;

Experimental and simulation analysis of daylight glare probability in offices with dynamic window shades

Abstract

Abstract This paper presents an experimental and simulation study to evaluate daylight glare probability (DGP) in office spaces with roller shades. Roller shades can be controlled in various ways and have an openness, transmitting direct and diffuse light even when fully closed. Since DGP combines the overall brightness of the visual field and the perceived contrast of the scene in one metric, the development of glare protection guidelines is complex in this case. Full-scale experiments with an HDR camera in test offices were combined with a validated, integrated daylighting and glare model. Correlations between DGP and design parameters (work plane or vertical illuminance) were developed and the applicability of DGP and DGPs for closed and controlled shades is discussed. The results show that DGPs is not an accurate metric when the sun is within the field of view – even for low openness fabrics – while the DGP equation might need a correction for such cases, due to extreme values of the solar corona's luminance influencing the luminance term. DGP and work plane illuminance are not well correlated, except for the case of perfectly diffuse fabrics. However, for all instances when the sun is not visible by the occupant, DGPs can be used to approximate daylight glare, including cases with sunlight on various surfaces in the space, for any fabric openness and control type. This enables the development of model-based, real-time glare control shading operation, with vertical illuminance being the basic parameter. Simple sunlight protection strategies cannot prevent glare, despite maximizing daylight utilization.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    150
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
150
Top 1%
Top 10%
Top 1%