Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Building and Environ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Building and Environment
Article . 2017 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Quantifying and mapping embodied environmental requirements of urban building stocks

Authors: André Stephan; Aristide Athanassiadis; Aristide Athanassiadis; Aristide Athanassiadis;

Quantifying and mapping embodied environmental requirements of urban building stocks

Abstract

Abstract Cities and their building stocks result in huge environmental impacts which are critical to reduce. However, the majority of existing studies focus on operational requirements or on material stocks. To date, very few studies have quantified embodied environmental requirements of building stocks and spatialised them. This study describes a bottom-up approach to spatially model building stocks and quantify their embodied environmental requirements. It uses a highly disaggregated approach where each building's geometry is modelled and used to derive a bill of quantities. Construction assemblies relevant to each building archetype (derived based on land-use, age and height) are defined using expert knowledge in construction. The initial and recurrent embodied energy, water and greenhouse gas emissions associated with each material within each assembly are calculated using a comprehensive hybrid analysis technique. This model is applied to all buildings of the City of Melbourne, Australia. Results show that rebuilding the City of Melbourne's building stock today would require 904 kt of materials/km 2 (total: 32 725 kt), 10 PJ/km 2 (total: 362 PJ), 17.7 Million m 3 of embodied water/km 2 (total: 640.74 Million m 3 ) and would emit 605 ktCO 2 e/km 2 (total: 23 530 ktCO 2 e). This study demonstrates the breadth of the model outputs, including material stocks maps and breakdowns of life cycle embodied requirements by material, construction assembly, building and building typology at the city level. Using such model, city councils can better manage building stocks in terms of waste processing, urban mining and circular economy, as well as reducing embodied environmental requirements over time.

Countries
Australia, Belgium
Keywords

690, Energy, Melbourne, Material stock, Urbanisme et architecture [génie civil], 720, Urban and building environmental models, 620, Greenhouse gas emissions, Bottom-up

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    183
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
183
Top 1%
Top 1%
Top 1%
bronze