
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Inferring personalized visual satisfaction profiles in daylit offices from comparative preferences using a Bayesian approach

Abstract This paper presents a new method for developing personalized visual satisfaction profiles in private daylit offices using Bayesian inference. Unlike previous studies based on action data, a set of experiments with human subjects and changing visual conditions were conducted to collect comparative preference data. The likelihood function was defined by linking comparative visual preference data with the visual satisfaction utility function using a probit model structure. A parametrized Gaussian bell function was adopted for the latent satisfaction utility model, based on our belief that each person has a specific set of neighboring visual conditions that are most preferred. Distinct visual preference profiles were inferred with a Bayesian approach using the experimental data. The inferred visual satisfaction utility functions and the model performance results reflect the ability of the models to discover different personalized visual satisfaction profiles. The method presented in this paper will serve as a paradigm for developing personalized preference models, for potential use in personalized controls, balancing human satisfaction with indoor environmental conditions and energy use considerations.
- Purdue University West Lafayette United States
- Purdue University West Lafayette United States
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).29 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
