Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Recolector de Cienci...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Building and Environment
Article . 2020 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
RIARTE
Article . 2020
License: CC BY NC ND
Data sources: RIARTE
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Optimization of energy saving with adaptive setpoint temperatures by calculating the prevailing mean outdoor air temperature

Authors: Bienvenido Huertas, David; Sánchez García, Daniel; Pérez Fargallo, Alexis; Rubio Romero, Juan Carlos;

Optimization of energy saving with adaptive setpoint temperatures by calculating the prevailing mean outdoor air temperature

Abstract

Many studies are nowadays focused on the application of energy conservation measures (ECMs) to building sector because of the reductions of both greenhouse gases and energy consumption set by the European Union. Heating, Ventilating and Air Conditioning (HVAC) systems are the main causes of most energy consumption in the existing buildings. One of the methods to reduce energy consumption is the modification of setpoint temperatures adapted to external climate conditions but maintaining acceptable comfort levels. The adaptive comfort model of ASHRAE 55–2017 uses the prevailing mean outdoor temperature, which records temperatures of the previous days weighted by a constant α which depends on weather changes. This paper analyses the possibilities of optimizing building energy saving with setpoint temperatures according to the α-value and the number of previous days considered. A total of 390 simulations were conducted by considering three representative climate zones of Spain. The results showed that the α-values between 0.4 and 0.6 had the lowest energy consumption. The use of a low number of previous days also achieved greater reductions in heating energy consumption, whereas a larger number of days was applied to cooling energy consumption. This study makes progress in using adaptive setpoint temperatures optimally to reduce the energy consumption in the building sector. © 2019 Elsevier Ltd

Country
Spain
Keywords

Consumo energético, Prevailing mean outdoor temperature, 3306.09 Transmisión y Distribución, Gases de efecto invernadero, Confort térmico adaptativo, 2501.21 Simulación Numérica, Buildings, 6307.07 Tecnología y Cambio Social, 3311.16 Instrumentos de Medida de la Temperatura, Simulación energética - herramientas, Comportamiento energético, Energy consumption, Temperatura de referencia, 2411.09 Regulación de la Temperatura Humana, 3305.14 Viviendas, Ahorro energético, Calefacción, Sector de la Construcción, Adaptive setpoint temperatures, Clima

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    33
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
33
Top 10%
Top 10%
Top 10%
Green