Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Building and Environ...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Building and Environment
Article . 2021 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Analysis method based on coupled heat transfer and CFD simulations for buildings with thermally complex building envelopes

Authors: Tatsuhiro Yamamoto; Akihito Ozaki; Suehiro Kaoru; Kazuhiro Taniguchi;

Analysis method based on coupled heat transfer and CFD simulations for buildings with thermally complex building envelopes

Abstract

Abstract A thermal environment simulation method was developed for a structure with a thermally complex building envelope. The method used a heat transfer simulation (HTS), computational fluid dynamics (CFD), and a two-dimensional heat-flow calculation tool called Hygrabe2D. The general HTS does not support the modeling of buildings with a radial shape. Therefore, the building envelope was evaluated using a two-dimensional heat-flow computation tool coupled to the HTS. In the HTS, the amount of advection between zones for buildings with volumes that should be divided into multiple zones was unknown. The indoor surface temperature calculated by Hygrabe2D was coupled to the HTS, and the advection and convective heat transfer coefficients between zones were calculated via CFD, which were passed to the HTS. The accuracy of the proposed method was verified and validated. The influence of calculation accuracy was investigated by comparing the accuracies in the presence and absence of the coupling of the convective heat transfer coefficient. The initial conditional dependence of coupled advection between zones was confirmed, although it had no significant effect on the calculation accuracy. Through verification of the computational load reduction, we achieved computational accuracy with a small number of couplings. The proposed method was used to evaluate the thermal environment of a building by calculating the annual room temperature and temperature inside the building skin.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    15
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
15
Top 10%
Top 10%
Top 10%