
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Data acquisition for urban building energy modeling: A review

handle: 11311/1218446
Urban Building Energy Modeling (UBEM) is essential for urban energy-related applications. Its generation mainly requires four data inputs, including geometric data, non-geometric data, weather data, and validation and calibration data. A reliable UBEM depends on the quantity and accuracy of the data inputs. However, the lack of available data and the difficulty in determining stochastic data are two of the main barriers in the development of UBEM. To bridge the research gaps, this paper reviews appropriate acquisition approaches for four data inputs, learning from both building science and other disciplines such as geography, transportation and computer science. In addition, detailed evaluations are also conducted in each part of the study, and the performance of the approaches are discussed, as well as the availability and cost of the implemented data. Systematic discussion, multidisciplinary analysis and comprehensive evaluation are the highlights of this review.
- Southeast University China (People's Republic of)
- Southeast University China (People's Republic of)
- Polytechnic University of Milan Italy
- Tongji University China (People's Republic of)
Data acquisition; Data science; UBEM; Urban building energy modeling; Urban energy simulation
Data acquisition; Data science; UBEM; Urban building energy modeling; Urban energy simulation
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).92 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
