Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Building and Environ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Building and Environment
Article . 2024 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A data-driven agent-based model of occupants’ thermal comfort behaviors for the planning of district-scale flexible work arrangements

Authors: Martín Mosteiro-Romero; Matias Quintana; Rudi Stouffs; Clayton Miller;

A data-driven agent-based model of occupants’ thermal comfort behaviors for the planning of district-scale flexible work arrangements

Abstract

In a global context of increasing flexibility in the way workplaces and the districts in which they are located are used, there is a need for occupant-driven approaches to plan urban energy systems. Several authors have suggested the use of agent-based models (ABM) of building occupants in urban building energy simulations due to their ability to reproduce emergent behaviors from individual agents’ actions. However, few works in the literature take full advantage of the ABM paradigm, accounting for both occupant presence and energy-relevant behaviors at the district scale. In this work, we propose a methodology to develop a data-driven, agent-based model of building occupants’ activities and thermal comfort in an urban district. Our methodology combines the use of campus-scale Wi-Fi data to derive feasible occupant activity and location plans, along with thermal preference profiles derived from a longitudinal field study where off-the-shelf, non-intrusive sensors were used to capture the right-here-right-now thermal preference of 35 participants in the same case study district. Our model is then used to explore how different district operation strategies could affect building energy performance in the context of increased workspace flexibility. Our results show that by providing a diversity of building operation conditions, with different buildings having different set point temperatures, occupants’ thermal comfort hours could be improved by an average of about 10% with little effect on district energy performance. Meanwhile, a 6%–15% average decrease in space cooling energy use intensity was observed when implementing occupant-driven ventilation and setpoint controls, regardless of location choice scenario. ; Environmental & Climate Design

Country
Netherlands
Keywords

690, Occupant modeling, Agent-based modeling, Flexible work arrangements, Thermal comfort, Data-driven, Urban building energy modeling

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    6
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
6
Average
Average
Top 10%
hybrid
Related to Research communities
Energy Research