Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Current Applied Phys...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Current Applied Physics
Article . 2016 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Flexible thermoelectric generator with polydimethyl siloxane in thermoelectric material and substrate

Authors: Chang Jun Choi; Young Jung; Jong Soo Ko; Kyung Kuk Jung; Jae Min Lee;

Flexible thermoelectric generator with polydimethyl siloxane in thermoelectric material and substrate

Abstract

Abstract In this paper, the fabrication and characterization of a flexible thermoelectric generator (TEG) is presented. Bismuth telluride powder (Bi/Te) is utilized as p- and n-type thermoelectric materials, and carbon nanotubes (CNTs) are used to enhance electrical conductivity. Both the CNTs and bismuth telluride (Bi/Te) powder are mixed with a solution of polydimethyl siloxane (PDMS) as a precursor. The same PDMS used for the hybrid thermoelectric materials is also used as the substrate, making the TEG flexible and increasing its stability. The Seebeck coefficients of the fabricated p- and n-type thermoelectric materials are 143 and -174 μV/K, respectively. The output voltage of the fabricated device is 920 mV and the generated power is 570 μW/cm 2 with a temperature difference of 60 °C. The fabricated TEG maintains its performance level during bending reliability tests on a curvature with a radius as small as 5 mm, and after more than 1000 repetitions of bending on a curvature with a radius of 20 mm.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    49
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
49
Top 10%
Top 10%
Top 10%