Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Carbonarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Carbon
Article . 2011 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Thermal conductivity and permeability of consolidated expanded natural graphite treated with sulphuric acid

Authors: Roger Thorpe; Steven J. Metcalf; Liwei Wang; Liwei Wang; Zacharie Tamainot-Telto; Robert E. Critoph;

Thermal conductivity and permeability of consolidated expanded natural graphite treated with sulphuric acid

Abstract

The thermal conductivity and permeability of consolidated expanded natural graphite treated with sulphuric acid (ENG-TSA) were measured both parallel and perpendicular to the direction of compression used to produce the samples. Results showed that the thermal conductivity and permeability were highly anisotropic. The thermal conductivity perpendicular to the direction of compression was 50 times higher than that parallel to the direction of compression and the permeability was 200 times higher. The maximum thermal conductivity measured was 337 W m(-1)K(-1) at a bulk density of 831 kg m(-3). The permeability perpendicular to the direction of compression varied in the range of 10(-11) to 10(-16) m(2) as the density increased from 111 to 539 kg m(-3). The specific heat was measured, and the average value is 0.89 kJ kg(-1) K(-1) in the temperature range 30-150 degrees C. As a type of heat transfer matrix the thermal diffusivity was about five times higher than that of, for example, pure aluminium due to the combination of improved thermal conductivity with comparatively low density and reasonable specific heat. (C) 2011 Elsevier Ltd. All rights reserved.

Related Organizations
Powered by OpenAIRE graph
Found an issue? Give us feedback