
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Theory of flow distribution in manifolds

Flows in manifolds are of great importance in quite diverse fields of science and technology, including fuel cells, spargers, solar collectors, microchannels, porous infiltration and irrigation. Theory of flow distribution and pressure drop is vital to predict process performance and efficiency of manifold systems. In this paper, we examined research and development of theoretical models and methodology of solutions in flow in manifolds and highlight remarkable advances in the past fifty years. The main existing models and solution methods were unified further to one theoretical framework, including Bernoulli theory and momentum theory, and discrete and continuum methodologies. The generalised model was applicable to not only designs of continuum manifolds but also those of discrete manifolds with constant or varying factors. The procedure of design calculation is in reality straightforward without requirements of iteration, successive approximation and computer programme. The theoretical model provides easy-to-use design guidance to investigate the interactions among structures, operating conditions and manufacturing tolerance under a wide variety of combination of flow conditions and geometries through three general characteristic parameters (E, M and ζ) and to minimize the impact on manifold operability.
- Rothamsted Research United Kingdom
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).186 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 1% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
