Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Chemical Engineering...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Chemical Engineering Journal
Article . 2020 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Induced dipole force driven PEG/PPEGMA form-stable phase change energy storage materials with high latent heat

Authors: Yuezhen Zhao; Yuang Zhang; Yao Meng; Yao Meng; Bingtao Tang;

Induced dipole force driven PEG/PPEGMA form-stable phase change energy storage materials with high latent heat

Abstract

Abstract Phase-change materials (PCMs) can store and release great amount of thermal energy during the phase change and thus have broad application prospects in thermal energy management, waste heat recovery, building energy conservation, and other fields. However, the before and after state changes of PCMs are often accompanied by liquid leakage, thus severely limiting their application. Introducing supporting materials can solve this leakage problem but at the expense of phase-change enthalpy and service life. Herein, a novel comb-like structural phase-change composite with high latent heat was designed by using poly (ethylene glycol) (PEG) chain, which tightly intertwines with a comb-like structural phase-change supporting material under induced dipole force due to structural compatibility. This material can achieve shape stability and obtain high phase-change enthalpies (168.9 J/g–200.3 J/g). Furthermore, the composite does not show phase separation due to the good compatibility, and its phase-change temperatures and enthalpies can be adjusted by regulating the content and molecular weight of the loaded PEG.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    85
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
85
Top 1%
Top 10%
Top 1%