
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Plastic waste upcycling toward a circular economy

Abstract Large amounts of plastics are discarded worldwide each year, leading to a significant mass of waste in landfills and pollution to soil, air, and waterways. Upcycling is an efficient way to transform plastic waste into high-value products and can significantly lessen the environmental impact of plastic production/consumption. In this article, current advances and future directions in plastic waste upcycling technologies are discussed. In particular, this review focuses on the production of high-value materials from plastic waste conversion methods, including pyrolysis, gasification, photoreforming, and mechanical reprocessing. Plastic waste compositions, conversion products, reaction mechanisms, catalyst selection, conversion efficiencies, polymer design, and polymer modification are also explored. The main challenges facing the adoption and scale-up of these technologies are highlighted. Suggestions are given for focusing future research and development to increase the efficiency of upcycling practices.
- University of Tennessee at Knoxville United States
- Georgia Institute of Technology United States
- Tennessee State University United States
- Oak Ridge National Laboratory United States
- Georgia Institute of Technology United States
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).275 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 0.1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 0.1%
