Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ LAReferencia - Red F...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
CONICET Digital
Article . 2008
License: CC BY NC SA
Data sources: CONICET Digital
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Chemical Engineering and Processing - Process Intensification
Article . 2008 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Hydrodynamic aspects in anaerobic fluidized bed reactor modeling

Authors: Fuentes Mora, Mauren; Scenna, Nicolas Jose; Aguirre, Pio Antonio; Mussati, Miguel Ceferino;

Hydrodynamic aspects in anaerobic fluidized bed reactor modeling

Abstract

The main purpose of this paper is to analyze the adequacy of some hypotheses assumed in the literature for modeling mass transfer phenomena and hydrodynamics in bioreactors. Four different hydrodynamic models were investigated to simulate the dynamic behavior of an anaerobic fluidized bed reactor (AFBR). A total developed flow condition and the assumption of an incipient gas phase are some of the evaluated hypotheses. All AFBR models simultaneously compute the dynamics of the phases and their components, including the effect of the biofilm growth in the fluidization characteristics. From a computational point of view, ordinary and partial differential equation-based models were calculated using gPROMS (Process System Enterprise Ltd.). Simulations based on a case study were compared. The bioreactor performance was analyzed through the main variable profiles such as phase holdups and bed height, pH, chemical oxygen demand (COD), biofilm concentration and biogas flow rate. In a previous paper [M. Fuentes, M.C. Mussati, N.J. Scenna, P.A. Aguirre, Global modeling and simulation of a three-phase fluidized bed bioreactor, Comput. Chem. Eng., Ms. Ref. No.: 4281, submitted for publication], a heterogeneous model of a three-phase bioreactor system was presented by proposing a one-dimensional (axial) dispersive model. Its results are here used to establish a reference point. For example, the fact of considering a three-phase system with total developed flow (hydrodynamic pseudo-steady state) and complete mixture in all phases causes deviations around 5% in predictions of biofilm concentration, and 0.5% in predictions of liquid and gas phase component concentrations, when compared with results from the phenomenological dispersive model. However, predicted total COD removal efficiency is almost the same for both models. Although the gas holdup is negligible when compared with the liquid and solid ones in anaerobic fluidized bed reactors, results from model simplification assuming an incipient gas phase differ considerably from predictions based on original three-phase modeling.

Country
Argentina
Keywords

Hydrodinamycs, Bioreactors, https://purl.org/becyt/ford/2.4, https://purl.org/becyt/ford/2

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    12
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
12
Average
Average
Average