Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IRIS Cnrarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Ceramics International
Article . 2023 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
CNR ExploRA
Article . 2023
Data sources: CNR ExploRA
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Low losses Er3+-doped flexible planar waveguide: Toward an all-glass flexible planar photonic system

Authors: Alice Carlotto; Thi Ngoc Lam Tran; Bartosz Babiarczuk; Nicola Bazzanella; Anna Szczurek; Stefano Varas; Justyna Krzak; +7 Authors

Low losses Er3+-doped flexible planar waveguide: Toward an all-glass flexible planar photonic system

Abstract

Thin films have a crucial role in integrated optics. The development of passive and active devices such as splitters, waveguides, multiplexers and optical amplifiers is by now established on rigid substrates. Therefore, an important further step to improve this kind of technologies and open the route to new applications is to extend these functionalities to mechanically flexible devices. One fundamental brick to obtain this features extension is the fabrication of low loss inorganic active planar waveguides on flexible glass substrate. Here, we present the preliminary results of a novel top-down fabrication of an active SiO-HfO:Er all-glass flexible planar waveguide, via radio frequency sputtering. The waveguiding system, deposited on ultrathin flexible glass substrate, showed an attenuation coefficient lower than 0.2 dB/cm at 1.53 ?m and exhibits emission in the NIR region.

Keywords

Ultrathin flexible glass, Er; 3+; activated waveguide; Flexible planar waveguide; RF-Sputtering; Ultrathin flexible glass;, Er3+ activated waveguide, RF-Sputtering, Flexible planar waveguide

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    6
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
6
Top 10%
Top 10%
Top 10%
Green
hybrid
Funded by
Related to Research communities
Energy Research