Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Chemical Engineering...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Chemical Engineering Science
Article . 2006 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Investigation of the particle flowpattern and segregation in tapered fluidized bed granulators

Authors: Alex C. Hoffmann; S.H. Schaafsma; T. Marx;

Investigation of the particle flowpattern and segregation in tapered fluidized bed granulators

Abstract

The particle flowpattern and granule segregation in tapered fluidized beds have been studied using two techniques. The first technique is to fluidize beds of varying total mass and granule fractions, then defluidize them suddenly to "freeze" the composition, section the bed in layers, and determine the composition of each layer by sieving. The second technique is to track a radioactive particle mimicking a granule as it moves in the bed. The results show that the segregation behaviour of granules is complex, their behaviour changing from flotsam at low granule concentrations to slightly jetsam at higher concentrations. The flow in the tapered bed is very different from what is expected based on relations derived for cylindrical beds. In the tapered bed a central region of high bubble activity and upward flow was a dominant feature. This "gulf streaming" became more pronounced as the total bed mass, and therefore the bed height, was increased, resulting in a bed turn-over time almost independent of the total bed mass. Quantitative data are given for upward and downward particle velocities and flows, bed turnover times, and axial granule concentration profiles. (c) 2006 Elsevier Ltd. All rights reserved.

Related Organizations
Keywords

tapered fluidized bed, particle flowpattern, MIXTURES, gulf streaming, segregation, granulation, GAS, PEPT, POWDER

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    52
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
52
Top 10%
Top 10%
Top 10%