
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Hydrodynamic simulation of gas–solids downflow reactors

Abstract In this work, we investigate the radial flow structure in gas–solids downer using Euler–Euler computational fluid dynamics (CFD) models. Solids are modeled as pseudo-fluid using kinetic theory of granular flow. In addition to the mass and momentum conservation equations, transport equation for fluctuating kinetic energy of the solids (modeled as granular temperature) is solved. The main focus of this work is the systematic investigation of the most suitable closures for the various force interactions in the system of interest. Results are presented for mean solids velocity, volume fraction, granular temperature and slip velocities for various closure forms. Sensitivity of the predicted results to the choice of closure forms is presented. Finally we emphasize the idea of matching slip velocities and the trends thereof with solids fraction as the key to developing a robust CFD model which has predictive capability over a wide variety of flow conditions.
- The University of Texas System United States
- Texas A&M University – Kingsville United States
- Indian Institutes of Technology India
- Indian Institutes of Technology India
- Texas A&M University – Kingsville United States
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).59 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
