Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Chemical Engineering...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Chemical Engineering Science
Article . 2018 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A new two-phase coupling model using a random fluid fluctuating velocity: Application to liquid fluidized beds

Authors: Abbasfard, Hamed; Evans, Geoffrey; Khan, Md Shakhaoth; Moreno-Atanasio, Roberto;

A new two-phase coupling model using a random fluid fluctuating velocity: Application to liquid fluidized beds

Abstract

Abstract Liquid solid fluidized beds are widely applicable two-phase contactors by which solid and liquid phase constantly exchange energy/mass at the interface. In this paper, a new DEM simulation approach to analyse the hydrodynamic behaviour of fluidized beds has been introduced and validated. In this approach, a random liquid fluctuating velocity following a Gaussian distribution is used to simulate the fluid phase. The mean and standard deviation of the distribution were functions of the liquid velocity and bed concentration. The liquid fluctuating velocity was able to produce a random motion of the particle across the entire bed. This new methodology can predict bed expansion and porosity, particle mixing time and velocity as a function of liquid velocity. The simulation results revealed that using DEM only along with the simulation methodology presented in this study suffices to predict the hydrodynamics of a fluidized bed to a reasonable accuracy.

Country
Australia
Keywords

liquid fluidized beds, DEM, mixing, fluctuating velocity, 532

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    6
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
6
Average
Average
Top 10%