Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Chemospherearrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Chemosphere
Article
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Chemosphere
Article . 2005 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
Chemosphere
Article . 2005
Chemosphere
Article . 2005
Data sources: Ciência-UCP
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Synergistic effect of Glomus intraradices and Frankia spp. on the growth and stress recovery of Alnus glutinosa in an alkaline anthropogenic sediment

Authors: Oliveira, R. S.; Castro, P. M. L.; Dodd, J. C.; Vosátka, M.;

Synergistic effect of Glomus intraradices and Frankia spp. on the growth and stress recovery of Alnus glutinosa in an alkaline anthropogenic sediment

Abstract

The presence of actinorhizas and arbuscular mycorrhizas may reduce plant stresses caused by adverse soil conditions. A greenhouse experiment was conducted using a sediment with a high pH, resulting from the disposal of waste originated at an acetylene and polyvinylchloride factory, in which Black alder (Alnus glutinosa) seedlings were inoculated either with Glomus intraradices BEG163 (originally isolated from the same sediment), Frankia spp. or both symbionts. After a 6-month growth period, plants inoculated with both symbionts had significantly greater leaf area, shoot height and total biomass when compared with the uninoculated control, the Frankia spp. and the G. intraradices treatments alone. In dual inoculated plants the N and P leaf content was significantly increased. A defoliation experiment was performed to evaluate the stress recovery of A. glutinosa and plants inoculated with both symbionts had a faster leaf regrowth and produced greater numbers of leaves. The dual inoculation resulted in greater numbers of and larger root nodules than when inoculated with Frankia spp. alone. The length and NADH diaphorase activity of the extraradical mycelium of G. intraradices was also significantly greater when dual inoculation was performed. The inoculation with Frankia spp. alone was shown to improve A. glutinosa growth, whereas G. intraradices alone had no positive effect under these environmental conditions. However, when the two symbionts were inoculated together a synergistic effect was observed resulting in a greater benefit for the plants and for both symbionts. The relevance of these findings for the phytorestoration of anthropogenic stressed sediments with high pH is discussed.

Country
Portugal
Keywords

Chlorophyll, Geologic Sediments, Phytorestoration, Nitrogen, Industrial Waste, Alnus, Industrial sediment, AMF, High pH, Soil Pollutants, Biomass, Symbiosis, Actinorhiza, Dual inoculation, Chlorophyll A, Fungi, Phosphorus, Hydrogen-Ion Concentration, Carbon, Refuse Disposal, Plant Leaves, Biodegradation, Environmental, Potassium, Frankia, Plant Shoots

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    71
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 83
    download downloads 38
  • 83
    views
    38
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
71
Top 10%
Top 10%
Top 10%
83
38
bronze