
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Catalytic oxidation of Hg0 by MnOx–CeO2/γ-Al2O3 catalyst at low temperatures

pmid: 24332734
MnOx-CeO2/γ-Al2O3 (MnCe) selective catalytic reduction (SCR) catalysts prepared by sol-gel method were employed for low-temperature Hg(0) oxidation on a fixed-bed experimental setup. BET, XRD and XPS were used to characterize the catalysts. MnCe catalysts exhibited high Hg(0) oxidation activity at low temperatures (100-250 °C) under the simulated flue gas (O2, CO2, NO, SO2, HCl, H2O and balanced with N2). Only a small decrease in mercury oxidation was observed in the presence of 1200 ppm SO2, which proved that the addition of Ce helped resist SO2 poisoning. An enhancing effect of NO was observed due to the formation of multi-activity NOx species. The presence of HCl alone had excellent Hg(0) oxidation ability, while 10 ppm HCl plus 5% O2 further increased Hg(0) oxidation efficiency to 100%. Hg(0) oxidation on the MnCe catalyst surface followed the Langmiur-Hinshelwood mechanism, where reactions took place between the adsorbed active species and adsorbed Hg(0) to form Hg(2+). NH3 competed with Hg(0) for active sites on the catalyst surface, hence inhibiting Hg(0) oxidation. This study shows the feasibility of a single-step process integrating low-temperature SCR and Hg(0) oxidation from the coal combustion flue gas.
- Huazhong University of Science and Technology China (People's Republic of)
Air Pollutants, Temperature, Oxides, Mercury, Catalysis, Coal, Adsorption, Gases, Hydrochloric Acid, Oxidation-Reduction
Air Pollutants, Temperature, Oxides, Mercury, Catalysis, Coal, Adsorption, Gases, Hydrochloric Acid, Oxidation-Reduction
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).84 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
