
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Effective swine wastewater treatment by combining microbial fuel cells with flocculation

pmid: 28525870
Microbial fuel cells (MFCs) provide a cost-effective method for treating swine wastewater treatment and simultaneously producing electricity, yet they need to be combined with other wastewater treatment processes to improve the effluent water quality. In this paper, we constructed single-chamber air-cathode MFCs with a compact configuration for nitrogen and COD removal and high electricity production and combined them with a low-cost flocculation process to discharge higher quality wastewater. We show that MFCs could remove ammonia at a rate of 269.2 ± 0.5 g m-3 d-1 (99.1± 0.1% ammonia removal efficiency) with a maximum power density of 37.5 W m-3 and 21.6% of coulombic efficiency at a 40:60 ratio of raw swine wastewater to denitrification effluent of swine wastewater. Up to 82.5 ± 0.5% COD could be removed with MFCs, from 2735 ± 15 mg L-1 to 480 ± 15 mg L-1, and flocculation further reduced levels to 90 ± 1 mg L-1 for a 96.6 ± 0.2% overall COD removal efficiency of the combination technology. Cost analysis of the combined MFC and flocculation process showed a net economic benefit of $ 0.026 m-3. In summary, this novel combination wastewater treatment method provides an effective way to treat swine wastewater to low pollutant levels in the effluent at low cost (a net gain).
- State Key Laboratory of Clean Energy Utilization China (People's Republic of)
- State Key Laboratory of Clean Energy Utilization China (People's Republic of)
- Zhejiang Ocean University China (People's Republic of)
- Zhejiang Ocean University China (People's Republic of)
Bioelectric Energy Sources, Nitrogen, Swine, Flocculation, Wastewater, Waste Disposal, Fluid, Ammonia, Animals, Water Pollutants, Chemical
Bioelectric Energy Sources, Nitrogen, Swine, Flocculation, Wastewater, Waste Disposal, Fluid, Ammonia, Animals, Water Pollutants, Chemical
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).79 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
