Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Chemospherearrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Chemosphere
Article . 2017 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Effective swine wastewater treatment by combining microbial fuel cells with flocculation

Authors: Weijun Ding; Shaoan Cheng; Liliang Yu; Haobin Huang;

Effective swine wastewater treatment by combining microbial fuel cells with flocculation

Abstract

Microbial fuel cells (MFCs) provide a cost-effective method for treating swine wastewater treatment and simultaneously producing electricity, yet they need to be combined with other wastewater treatment processes to improve the effluent water quality. In this paper, we constructed single-chamber air-cathode MFCs with a compact configuration for nitrogen and COD removal and high electricity production and combined them with a low-cost flocculation process to discharge higher quality wastewater. We show that MFCs could remove ammonia at a rate of 269.2 ± 0.5 g m-3 d-1 (99.1± 0.1% ammonia removal efficiency) with a maximum power density of 37.5 W m-3 and 21.6% of coulombic efficiency at a 40:60 ratio of raw swine wastewater to denitrification effluent of swine wastewater. Up to 82.5 ± 0.5% COD could be removed with MFCs, from 2735 ± 15 mg L-1 to 480 ± 15 mg L-1, and flocculation further reduced levels to 90 ± 1 mg L-1 for a 96.6 ± 0.2% overall COD removal efficiency of the combination technology. Cost analysis of the combined MFC and flocculation process showed a net economic benefit of $ 0.026 m-3. In summary, this novel combination wastewater treatment method provides an effective way to treat swine wastewater to low pollutant levels in the effluent at low cost (a net gain).

Related Organizations
Keywords

Bioelectric Energy Sources, Nitrogen, Swine, Flocculation, Wastewater, Waste Disposal, Fluid, Ammonia, Animals, Water Pollutants, Chemical

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    79
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
79
Top 1%
Top 10%
Top 1%