
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Relationship between bioelectrochemical copper migration, reduction and electricity in a three-chamber microbial fuel cell

pmid: 31629235
Microbial fuel cells (MFCs) can remove and recover metals in wastewater; however, there are relatively few studies of metal removal from soil by MFCs. In this study, we developed a three-chamber soil MFC consisting of an anode, contaminated soil, and cathode chamber to remove heavy metals from soil. The performance of the soil MFC was investigated by assessing the relationships among current, voltage, and Cu migration, and reduction. The developed soil MFC successfully reduced and removed Cu, and the Cu removal efficiency in the cathode surpassed 90% after only 7 days of operation. External resistance had a remarkable effect on the performance of the soil MFC which was depended on cathodic polarization. The pH in the cathode also depended on the external resistance. Lower external resistance were associated with lower pH values, higher Cu removal efficiencies, and greater amounts removed in the cathode. Based on sequential fractionation, the acid-extractable and reducible fractions were the main fractions that migrated within the three-chamber soil MFC. Enhancing the voltage output in the three-chamber soil MFC by increasing the external resistance promoted Cu migration, enriched Cu near the cathode, and facilitated Cu removal. Therefore, the developed three-chamber soil MFC not only supports heavy metal migration from soil towards the cathode, but can also realize reduction of heavy metals in the cathode by adjusting the current or voltage generated by the soil MFC.
- Tohoku University Japan
- Southeast University China (People's Republic of)
- Xi'an University of Science and Technology China (People's Republic of)
- Southeast University China (People's Republic of)
- Xi'an University of Technology China (People's Republic of)
Bioelectric Energy Sources, Wastewater, Soil, Electricity, Metals, Heavy, Electric Impedance, Soil Pollutants, Electrodes, Copper
Bioelectric Energy Sources, Wastewater, Soil, Electricity, Metals, Heavy, Electric Impedance, Soil Pollutants, Electrodes, Copper
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).33 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
