Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Chemospherearrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Chemosphere
Article
License: CC BY ND SA
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Chemosphere
Article . 2021 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Removal of 27 micropollutants by selected wetland macrophytes in hydroponic conditions

Authors: Hana Brunhoferova; Silvia Venditti; Markus Schlienz; Joachim Hansen;

Removal of 27 micropollutants by selected wetland macrophytes in hydroponic conditions

Abstract

In this work, the primary focus is given on a mixture of 27 micropollutants (pharmaceuticals, pesticides, herbicides, fungicides and others) and its removal from aqueous solution by phytoremediation. Phytoremediation belongs to technologies, which are contributing on removal of micropollutants from wastewater in constructed wetlands. Constructed wetlands can be used as an additional step for elimination of micropollutants from municipal medium-sized wastewater treatment plants. To our knowledge, such a broad variety of micropollutants was never targeted for removal by phytoremediation before. In this work, we carry out experiments with 3 emergent macrophytes: Phragmites australis, Iris pseudacorus and Lythrum salicaria in hydroponic conditions. The selected plants are exposed to mixture of micropollutants in concentrations 1-14 mg/l for a time period of 30 days. The highest affinity for phytoremediation is detected at groups of fluorosurfactants (removal rate up to 30%), beta-blockers (removal rate up to 50%) and antibiotics (removal rate up to 90%). The leading capability for micropollutant uptake is detected at Lythrum salicaria, where 25 out of 27 compounds are removed with more than 20% efficiency. The results demonstrate well usefulness of this technology e.g. in an additional treatment step, because the mentioned groups of micropollutants are removed with comparable or even higher effectivity, than it is in case of conventional wastewater treatment plants.

Country
Luxembourg
Related Organizations
Keywords

: Environmental sciences & ecology [F08] [Life sciences], Wastewater, Waste Disposal, Fluid, Water Purification, : Sciences de l'environnement & écologie [F08] [Sciences du vivant], Biodegradation, Environmental, Hydroponics, Wetlands, Hydroponic conditions, Mircopollutant removal, Water Pollutants, Chemical, Emergent macrophytes

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    32
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
32
Top 10%
Top 10%
Top 10%
Green
hybrid