
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Removal of 27 micropollutants by selected wetland macrophytes in hydroponic conditions

pmid: 34289626
In this work, the primary focus is given on a mixture of 27 micropollutants (pharmaceuticals, pesticides, herbicides, fungicides and others) and its removal from aqueous solution by phytoremediation. Phytoremediation belongs to technologies, which are contributing on removal of micropollutants from wastewater in constructed wetlands. Constructed wetlands can be used as an additional step for elimination of micropollutants from municipal medium-sized wastewater treatment plants. To our knowledge, such a broad variety of micropollutants was never targeted for removal by phytoremediation before. In this work, we carry out experiments with 3 emergent macrophytes: Phragmites australis, Iris pseudacorus and Lythrum salicaria in hydroponic conditions. The selected plants are exposed to mixture of micropollutants in concentrations 1-14 mg/l for a time period of 30 days. The highest affinity for phytoremediation is detected at groups of fluorosurfactants (removal rate up to 30%), beta-blockers (removal rate up to 50%) and antibiotics (removal rate up to 90%). The leading capability for micropollutant uptake is detected at Lythrum salicaria, where 25 out of 27 compounds are removed with more than 20% efficiency. The results demonstrate well usefulness of this technology e.g. in an additional treatment step, because the mentioned groups of micropollutants are removed with comparable or even higher effectivity, than it is in case of conventional wastewater treatment plants.
- University of Luxembourg Luxembourg
: Environmental sciences & ecology [F08] [Life sciences], Wastewater, Waste Disposal, Fluid, Water Purification, : Sciences de l'environnement & écologie [F08] [Sciences du vivant], Biodegradation, Environmental, Hydroponics, Wetlands, Hydroponic conditions, Mircopollutant removal, Water Pollutants, Chemical, Emergent macrophytes
: Environmental sciences & ecology [F08] [Life sciences], Wastewater, Waste Disposal, Fluid, Water Purification, : Sciences de l'environnement & écologie [F08] [Sciences du vivant], Biodegradation, Environmental, Hydroponics, Wetlands, Hydroponic conditions, Mircopollutant removal, Water Pollutants, Chemical, Emergent macrophytes
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).32 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
