
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Impact of pyrene (polycyclic aromatic hydrocarbons) pollutant on metabolites and lipid induction in microalgae Chlorella sorokiniana (UUIND6) to produce renewable biodiesel

pmid: 34273690
Pyrene (polycyclic aromatic hydrocarbon), an anthropogenic organic pollutant prevalent in various ecological units, receives more attention for bioremediation and energy transformation using microalgae. In this study, we have used pyrene pollutant (50-500 ppm) to evaluate the half-maximal inhibitory concentrations (IC50) of Chlorella sorokiniana and the impact on metabolites as well as the induction of lipid biosynthesis to produce renewable biodiesel. Pyrene concentration at 230 ppm (IC50) caused half-maximum inhibition for the 96 h incubation. The harvest in the stationary stage (day 16) for C. sorokiniana revealed a biomass generation of 449 ± 7 mg L-1 and 444 ± 8 mg L-1 dcw in the control medium and pyrene IC50 medium, respectively. An insignificant decline in biomass generation (1.2%) was observed due to the stress effect of the pyrene IC50 medium on metabolic biosynthesis. Although contrary to biomass generation, IC50 of pyrene assisted to induce lipid biosynthesis in C. sorokiniana. The improvement in lipid biosynthesis was observed as ~24% higher in pyrene IC50 compared to the control medium. The chemical composition of the microalgae biomass, metabolites, and lipids was examined using FTIR spectra. The extracted lipid was transesterified to produce biodiesel via methanolic-H2SO4 catalysis. The renewable biodiesel obtained was evaluated using FTIR and 1H NMR spectra. The transformation efficiency of the lipid of C. sorokiniana in biodiesel was calculated as ~81%. This research offers the incentive in lipid biosynthesis in microalgae cells using pyrene for the production of renewable and sustainable ecological biofuels along with bioremediation of pyrene.
- Koneru Lakshmaiah Education Foundation India
- Graphic Era University India
- Peoples' Friendship University of Russia Russian Federation
- Durban University of Technology South Africa
- Graphic Era University India
Pyrenes, 572, Lipids induction, Chlorella, Chlorella sorokiniana, Lipids, 333, Transesterification, Biofuels, Microalgae, Environmental Pollutants, Biodiesel, Pyrene (polycyclic aromatic hydrocarbons), Biomass, Polycyclic Aromatic Hydrocarbons
Pyrenes, 572, Lipids induction, Chlorella, Chlorella sorokiniana, Lipids, 333, Transesterification, Biofuels, Microalgae, Environmental Pollutants, Biodiesel, Pyrene (polycyclic aromatic hydrocarbons), Biomass, Polycyclic Aromatic Hydrocarbons
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).22 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
