Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Chemospherearrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Chemosphere
Article . 2022 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Effect of the bio-inspired modification of low-cost membranes with TiO2:ZnO as microbial fuel cell membranes

Authors: Patricia Luis; Pablo Bonilla; Billy Daniel Chinchin; Raúl Bahamonde Soria; Raúl Bahamonde Soria; Bart Van der Bruggen; Yan Zhao; +1 Authors

Effect of the bio-inspired modification of low-cost membranes with TiO2:ZnO as microbial fuel cell membranes

Abstract

Microbial fuel cells (MFCs) are a novel technique for converting biodegradable materials into electricity. In this study, the efficiency of mixed crystal (TiO2:ZnO) as a membrane modifier of a low-cost, antifouling and self-cleaning cation exchange membrane for MFCs was studied. The modification was prepared using polydopamine (PDA) as the bio-inspired glue, followed by gravity deposition of a mixture of catalyst nanoparticles (TiO2:ZnO 0.03%, 1:1 ratio) as anti-biofouling agents. The effects of the membrane modification were evaluated in terms of power density, open circuit potential, coulombic efficiency, anti-biofouling properties and also color and COD removal efficiency. The results showed that the use of the PDA-modified membrane and a mixture of catalysts facilitated the transfer of cations released during the oxidation process in the anodic compartment of the MFC, which increased the power generation in the MFC by 2.5 times and 5.7 times the current compared to pristine and PDA pristine membranes, decreased the MFC operating cycle time from 5 to 3 days, doubled the lifetime of the membranes and demonstrated higher COD removal efficiency and color removal. Finally, SEM and AFM analysis showed that the modification significantly minimized surface fouling. The modified membranes in this study proved to be a potential alternative to the expensive membranes currently used in MFCs, furthermore, this modification could be an interesting alternative modification for other potential membranes for use in MFCs, due to the fact that the catalyst activation was only performed with visible light (artificial and solar), which could decrease operating costs.

Keywords

Titanium, Bioelectric Energy Sources, Membranes, Artificial, Electricity, Zinc Oxide, Electrodes

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    17
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
17
Top 10%
Average
Top 10%
Related to Research communities
Energy Research