Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Chemospherearrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Chemosphere
Article . 2022 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Conversion of biomass blends (walnut shell and pearl millet) for the production of solid biofuel via torrefaction under different conditions

Authors: Iqra Abdullah; Nabeel Ahmad; Murid Hussain; Ashfaq Ahmed; Usama Ahmed; Young-Kwon Park;

Conversion of biomass blends (walnut shell and pearl millet) for the production of solid biofuel via torrefaction under different conditions

Abstract

The torrefaction of lignocellulose biomass was conducted to produce biochar with properties compatible with coal. Two lignocellulose biomasses, pearl millet (PM) and walnut shell (WS), were torrefied at different process temperatures (230-300 °C), residence times (30-90 min), and different compositional biomass blends to improve the characteristics of the biochar product. The resulting biochar product exhibited favorable changes in their properties. The pure biomasses and their blends obtained a high biochar yield (41-91%). The gross calorific value (GCV) ranged from 22 to 27 MJ/kg, showing an increase of 22-59% compared to the raw biomass. The torrefaction temperature had the most notable effect on the biochar quantity and quality. The biochar samples obtained from the torrefaction of different blends showed a higher GCV and other physicochemical characteristics than the pure biomasses. Scanning electron microscopy showed that these products might also be used for other applications.

Country
Australia
Keywords

Pennisetum, biomass, Temperature, 4011 Environmental engineering, Juglans, 4004 Chemical engineering, walnut shells, Coal, Institute for Sustainable Industries and Liveable Cities, Biofuels, biofuel, Biomass, pearl millet

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    27
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
27
Top 10%
Average
Top 10%