Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Chemospherearrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Chemosphere
Article . 2022 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Enhancement of black and odorous water treatment coupled with accelerated lipid production by microalgae exposed to 12C6+ heavy-ion beam irradiation

Authors: Yitong Shao; Yongsheng Fu; Yangwu Chen; Abdelfatah Abomohra; Qi He; Wenjie Jin; Jian Liu; +2 Authors

Enhancement of black and odorous water treatment coupled with accelerated lipid production by microalgae exposed to 12C6+ heavy-ion beam irradiation

Abstract

In this study, Auxenochlorella protothecoides (AP-CK) was selected due to its reported high growth potential in sterilized black and odorous water (SBOW). In order to improve the resource utilization level of microalgae for wastewater treatment, AP-CK was mutated using 12C6+ heavy-ion beam irradiation, and a high lipid-containing mutant (AP-34#) was isolated and further evaluated to treat original black and odorous water (OBOW). Compared with the wild type, the maximum removal rates of COD, NH4+-N and TP of the mutant increased by 8.12 ± 0.33%, 10.43 ± 0.54% and 11.97 ± 0.16%, respectively, while maximum dissolved oxygen content increased from 0 to 4.36 ± 0.25 mg/L. Besides, the mutant lipid yield increased by 115.87 ± 3.22% over the wild type in OBOW. The fatty acid profile of AP-34# grown in SBOW and OBOW showed higher proportion of saturated fatty acids (C16:0 and C18:0) and valuable polyunsaturated fatty acids (mainly C20:5n3 and C22:6n3) which are more suitable for biodiesel production and value-added products, respectively. This work provides a new perspective on improving the characteristics of microalgae and an innovative approach for resource-based microalgae wastewater treatment through bioremediation of black and odorous water.

Related Organizations
Keywords

Fatty Acids, Wastewater, Water Purification, Biofuels, Microalgae, Biomass

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    8
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
8
Top 10%
Average
Top 10%