Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Chemospherearrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Chemosphere
Article . 2023 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Highly efficient activation of peroxymonosulfate by biomass juncus derived carbon decorated with cobalt nanoparticles for the degradation of ofloxacin

Authors: Qin, Yang; Yingchun, Yang; Yujie, Zhang; Longcheng, Zhang; Shengjun, Sun; Kai, Dong; Yongsong, Luo; +5 Authors

Highly efficient activation of peroxymonosulfate by biomass juncus derived carbon decorated with cobalt nanoparticles for the degradation of ofloxacin

Abstract

The cobalt nanoparticles decorated biomass Juncus derived carbon (Co@JDC) was prepared by facile calcination strategy and applied to activate peroxymonosulfate (PMS) for eliminating ofloxacin (OFX) in the water environment. The results of catalytic experiments show that 97% of OFX degradation efficiency and 70.4% of chemical oxygen demand removal rate are obtained within 24 min at 0.1 g L-1 Co@JDC, 0.2 g L-1 PMS, 20 mg L-1 OFX (100 mL), and pH = 7, which indicates that Co@JDC/PMS system exhibits excellent performance. Meanwhile, the experimental results of affect factor show that Co@JDC/PMS system can operate in a wider pH range (3-9) and Cl-1, NO3-1, and SO42- have an ignorable effect on OFX degradation. The radical identification experiments confirm that SO4˙-, ·OH, O2˙-, and 1O2 are involved in the process of PMS activation, especially SO4˙- and 1O2 are the main contributors. Furthermore, a possible PMS activation mechanism by Co@JDC was proposed and the degradation pathways of OFX were deduced. Finally, the stable catalytic activity, negligible leaching of Co2+, and the outstanding degradation efficiency for other antibiotics prove that Co@JDC possesses good stability and universality.

Related Organizations
Keywords

Ofloxacin, Nanoparticles, Cobalt, Biomass, Carbon, Peroxides

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    20
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
20
Top 10%
Average
Top 10%