Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Chemospherearrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Chemosphere
Article . 2023 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Emerging microalgae-based biofuels: Technology, life-cycle and scale-up

Authors: B B, Marangon; I B, Magalhães; A S A P, Pereira; T A, Silva; R C N, Gama; J, Ferreira; J S, Castro; +3 Authors

Emerging microalgae-based biofuels: Technology, life-cycle and scale-up

Abstract

Microalgae biomass is a versatile feedstock with a variable composition that can be submitted to several conversion routes. Considering the increasing energy demand and the context of third-generation biofuels, algae can fulfill the increasing global demand for energy with the additional benefit of environmental impact mitigation. While biodiesel and biogas are widely consolidated and reviewed, emerging algal-based biofuels such as biohydrogen, biokerosene, and biomethane are cutting-edge technologies in earlier stages of development. In this context, the present study covers their theoretical and practical conversion technologies, environmental hotspots, and cost-effectiveness. Scaling-up considerations are also addressed, mainly through Life Cycle Assessment results and interpretation. Discussions on the current literature for each biofuel directs researchers towards challenges such as optimized pretreatment methods for biohydrogen and optimized catalyst for biokerosene, besides encouraging pilot and industrial scale studies for all biofuels. While presenting studies for larger scales, biomethane still needs continuous operation results to consolidate the technology further. Additionally, environmental improvements on all three routes are discussed in light of life-cycle models, highlighting the ample research opportunities on wastewater-grown microalgae biomass.

Keywords

Technology, Biofuels, Microalgae, Biomass, Wastewater, Plants

Powered by OpenAIRE graph
Found an issue? Give us feedback
Related to Research communities
Energy Research