Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Chemospherearrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Chemosphere
Article . 2023 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Interaction of the lignin-/cellulose-derived char with volatiles of varied origin: Part of the process for evolution of products in pyrolysis

Authors: Yuxiang, Chen; Chao, Li; Lijun, Zhang; Qifeng, Chen; Shu, Zhang; Jun, Xiang; Song, Hu; +2 Authors

Interaction of the lignin-/cellulose-derived char with volatiles of varied origin: Part of the process for evolution of products in pyrolysis

Abstract

The interaction between volatiles and homologous and/or heterologous char is almost inevitable during the transfer or diffusion of volatiles from inner core to outer surface of a biomass particle in pyrolysis. This shapes both composition of volatiles (bio-oil) and property of char. In this study, the potential interaction of lignin- and cellulose-derived volatiles with char of varied origin was investigated at 500 °C. The results indicated that both the lignin- and cellulose-char promoted polymerization of the lignin-derived phenolics, enhancing production of bio-oil by ca. 20%-30%, generating more heavy tar but suppressing gases formation, especially over cellulose-char. Conversely, the char catalysts, especially the heterologous lignin-char, promoted cracking of the cellulose-derivatives, producing more gases while less bio-oil and heavy organics. Additionally, the volatiles-char interaction also led to gasification of some organics and also aromatization of some organics on surface of char, resulting in enhanced crystallinity and thermostability of the used char catalyst, especially for the lignin-char. Moreover, the substance exchange and formation of carbon deposit also blocked pores and formed fragmented surface dotted with particulate matters in the used char catalysts.

Related Organizations
Keywords

Hot Temperature, Gases, Biomass, Cellulose, Lignin, Pyrolysis

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    11
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
11
Average
Average
Top 10%
Related to Research communities
Netherlands Research Portal