Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Chemospherearrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Chemosphere
Article . 2023 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Comprehensive assessment of biorefinery potential for biofuels production from macroalgal biomass: Towards a sustainable circular bioeconomy and greener future

Authors: Ravichandran Pravin; Gurunathan Baskar; Samuel Lalthazuala Rokhum; Arivalagan Pugazhendhi;

Comprehensive assessment of biorefinery potential for biofuels production from macroalgal biomass: Towards a sustainable circular bioeconomy and greener future

Abstract

Marine macroalgae have attracted significant interest as a viable resource for biofuel and value-added chemical production due to their abundant availability, low production costs, and high carbohydrate and lipid content. The growing awareness of socio-economic factors worldwide has led to a greater consideration of marine macroalgae as a sustainable source for biofuel production and the generation of valuable products. The integration of biorefinery techniques into biofuel production processes holds immense potential for fostering the development of a circular bioeconomy on a broad scale. Extensive research was focused on the technoeconomic and environmental impact analysis of biofuel production from macroalgal biomass. The integrated biorefinery processes offers valuable pathways for the practical implementation of macroalgae in diverse conversion technologies. These studies provided crucial insights into the large-scale industrial production of biofuels and associated by-products. This review explores the utilization of marine macroalgal biomass for the production of biofuels and biochemicals. It examines the application of assessment tools for evaluating the sustainability of biorefinery processes, including process integration and optimization, life cycle assessment, techno-economic analysis, socio-economic analysis, and multi-criteria decision analysis. The review also discusses the limitations, bottlenecks, challenges, and future perspectives associated with utilizing macroalgal biomass for the production of biofuels and value-added chemicals.

Keywords

Biofuels, Costs and Cost Analysis, Carbohydrates, Biomass, Seaweed

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    16
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
16
Top 10%
Average
Top 10%