Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Chemospherearrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Chemosphere
Article . 2024 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Chemosphere
Article . 2024 . Peer-reviewed
http://dx.doi.org/10.1016/j.ch...
Article
License: Elsevier TDM
Data sources: Sygma
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Phytomanagement of a metal-contaminated agricultural soil with Sorghum bicolor, humic / fulvic acids and arbuscular mycorrhizal fungi near the former Pb/Zn metaleurop Nord smelter

Authors: Ofori-Agyemang, Felix; Burges, Aritz; Waterlot, Christophe; Lounès - Hadj Sahraoui, Anissa; Tisserant, Benoît; Mench, Michel; Oustrière, Nadège;

Phytomanagement of a metal-contaminated agricultural soil with Sorghum bicolor, humic / fulvic acids and arbuscular mycorrhizal fungi near the former Pb/Zn metaleurop Nord smelter

Abstract

As many contaminated agricultural soils can no longer be used for food crops, lignocellulosic energy crops matter due to their ability to grow on such soils and to produce biomass for biosourced materials and biofuels, thereby reducing the pressure on the limited arable lands. Sorghum bicolor (L.) Moench, can potentially produce a high biomass suitable for producing bioethanol, renewable gasoline, diesel, and sustainable aircraft fuel, despite adverse environmental conditions (e.g. drought, contaminated soils). A 2-year field trial was carried out for the first time in the northern France for assessing sorghum growth on a Cd, Pb and Zn-contaminated agricultural soil amended with humic/fulvic acid, alone and paired with arbuscular mycorrhizal fungi. Sorghum produced on average (in t DW ha-1): 12.4 in year 1 despite experiencing a severe drought season and 15.3 in year 2. Humic/fulvic acids (Lonite 80SP®) and arbuscular mycorrhizal fungi did not significantly act as biostimulants regarding the shoot DW yield and metal uptake of sorghum. The annual shoot Cd, Pb and Zn removals averaged 0.14, 0.20 and 1.97 kg ha-1, respectively. Sorghum cultivation and its metal uptake induced a significant decrease in 0.01 M Ca(NO3)2-extractable soil Cd, Pb and Zn concentrations by 95%, 73% and 95%, respectively, in year 2. Soluble and exchangeable soil Cd, Pb and Zn would be progressively depleted in subsequent crops, which should result in lower pollutant linkages and enhanced ecosystem services. This evidenced sorghum as a relevant plant species for phytomanaging the large area (750 ha) with metal-contaminated soil near the former Pb/Zn Metaleurop Nord smelter, amidst ongoing climate change. The potential bioethanol yield of the harvested sorghum biomass was 5589 L ha-1. Thus sorghum would be a promising candidate for bioethanol production, even in this northern French region.

Country
France
Keywords

[SDE] Environmental Sciences, 570, [SDV]Life Sciences [q-bio], Soil, Mycorrhizae, Soil Pollutants, Benzopyrans, Biomass, Sorghum, Humic Substances, Soil Microbiology, Agriculture, 540, [SDV] Life Sciences [q-bio], Zinc, Biodegradation, Environmental, Lead, [SDE]Environmental Sciences, France, Cadmium

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average